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Scaling, generator coordinate method and the eigensolutions of 
the Schrodinger equation 
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t Physics Departament, National University, CC67, 1900 La Plata, Argentina 
$ Physics Department, Iowa State University, Ames, la  50011, USA 

Received 31 July 1984, in final form 14 May 1985 

Abstract. An extremely simple (approximate) variational method for the study of the 
eigensolutions of the one-dimensional Schrodinger equation is introduced, based upon the 
idea of employing scaled eigenstates of the harmonic oscillator as generating functions for 
the generator coordinate method. The approach is successfully applied to a variety of 
situations. 

1. Introduction 

It is well known that Schrodinger’s equation, even in the one-particle, one-dimensional 
case, rarely possesses an exact (analytical j solution. 

The eigensolutions of even the simplest (one-dimensional) Hamiltonian 

A = t 2 / 2 m  + U ( ; )  (1.1) 

may deserve careful scrutiny, in view of the prevailing belief that they may lead, in 
many instances, to a fuller understanding of ‘equivalent’ models in field theory (Bozzolo 
and Plastino 1981a). 

In a recent effort (Bozzolo and Plastino 1981b), an extremely simple variational 
method was presented, designed so as to study the solutions for the anharmonic 
oscillator U(; )  = mw2.f2/2+ AV(;), where V is an even function. The idea of the corre- 
sponding approach is that of finding the eigenstates IJ) of (1.2) starting with the 
eigenstates I j )  of the harmonic oscillator. The states IJ) and i j )  are necessarily connected 
by means of a unitary transformation of the form 

I J )  = exp(ii.)i j )  (1.2) 

and the question is then that of finding fi, which is tackled k y  recourse to the variational 
principle. It is easy to show that a first-order approach to F (let us call the approximate 
operator fi,) is tantamount to a scaling operation on any function g ( x )  ofthe coordinate, 
i.e., 

exp(ifi,(x))g(x) = J i g ( a x )  a real. (1.3) 

Consequently, minimisation of expectation values of with respect to the scaling 
factor a allows for a quite simple method that yields rigorous upper bounds to both 
the ground state ( G S )  and the first excited state (FES) of (1.2) (the latter for reasons 
of symmetry). 
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The purpose of the present work is two-fold: on the one hand, we wish to deal 
with Hamiltonians of the type ( l . l) ,  which are of a more general form than (1.2). On 
the other one, we would like to find rigorous upper bounds to all the eigenvalues of 
(1.1). These goals will be achieved by recourse to the generator coordinate method 
(GCM),  to be described in the following section. 

2. The generator coordinate method 

The generator coordinate method (Hill and Wheeler 1953, Griffin and Wheeler 1957) 
is an approach of great physical appeal based on the following ansatz for the wavefunc- 
tion one is interested in 

"(XI = d a f ( a ) 4 ( a ,  x),  (2.1) I 
where 4 (  a, x )  is called the generating function, a the generator coordinate and f( a )  
the weight function. The latter is to be determined by the variational principle 

W"lfilWI("l")) = 0. (2.2) 
As shown by Hill and Wheeler (1953) and Griffin and Wheeler (1957), the vari- 

ational principle (2.2) leads to the Hill-Wheeler equation I d P f ( P ) ( W a ,  P )  - EO(&, P I )  = O  (2.3) 

with 

w a y  P )  = ( 4 ( a ,  x)lfiI4(P, x)) and fva, P )  =(d(a,  x)l4(P, x)). (2.4) 
which, after discretisation, can be solved by recourse to diagonalisation techniques 
(see Faessler and Plastino 1973, and references therein). 

3. Scaling and the GCM 

In order to obtain approximate expressions for the eigenvalues of (1.10) (we will 
restrict U(x)  to be an even function), and according to the ideas outlined in 9 1, it 
seems rather natural to employ as generating functions the eigenstates of the harmonic 
oscillator, scaled according to (1.4), and with (Y as the generator coordinate. Indeed, 
this is the basic idea that underlies the present effort. The ansatz (2.1) will thus be 
cast as 

"(x) = daf(a)&g(a,  x )  (3.1) I 4(a, x)  = exP(i&))g(x) 

where g(x)  is the wavefunction corresponding to the G S  (FES) of the 'unperturbed' 
(harmonic oscillator h,) Hamiltonian, which in suitable units reads 

Lo = d2/dx2 + xz. 

g ( a x )  = 4even(a, x)  = 7r-1'4& exp(-a2x2/2), 

(3.2) 

(3.3) 

According to the parity (even or odd) we have, for example 

and a similar expression holds for 4odd((Y,  x) .  
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In solving the Hill-Wheeler equation ( 2 . 3 )  we will face (after discretisation of the 
generator coordinate a )  a generalised diagonalisation problem of the form 

c - E O 4  ) f p  = 0. ( 3 . 4 )  
P 

If the integral ( 2 . 3 )  is discretised by replacing it with a sum over N points, the 
diagonalisation of ( 3 . 4 )  yields N eigenvalues, which we shall take as approximations 
to the first N even (first N odd) eigenstates of fi. The approximate wavefunctions 
are of the form 

If the 4 ( a i ,  x)  are linearly independent, we are in a position to argue that the 
eige9values Em arising from (3.4) are upper bounds to the corresponding eigenvalues 
of H (Hylleraas and Undheim 1930).  The linear independence of the generating 
functions 4(  a, x) is guaranteed as long as one eigenvalue of the overlap matrix (a ,  p )  
is different from zero. 

A final point to be discussed is that of the discretisation of ( 2 . 1 ) .  In other words, 
how are we to choose the N points a, in that equation so as to reduce the HilLWheeler 
equations to the form ( 3 . 4 ) .  An appealling choice is that of setting a = J w .  In this 
way, we could select a particular value of w, say wo, as a ‘fundamental’ frequency, 
and the remaining ( N  - 1 )  values as ‘overtones’ of that frequency, i.e., w, = nuo,  
n = 1,. . . , N. We can regard wo as an additional degree of freedom which is fixed by 
the variational principle. 

4. Simple applications 

We shall now deal with specific applications of the formalism introduced in the present 
work. This entails dealing with typical potentials U ( x ) ,  as specific instances of the 
general Hamiltonian (1.1). 

In our case we need, first of all, expressions for the overlap O( a, p ) ,  and, for each 
U ( x ) ,  the kernel %(a, p ) .  This task is to be separately performed for both even (e) 
or odd (0) states, and one easily finds 

4.1. The generalised anharmonic oscillator 

This is a problem of permanent interest for a variety of reasons. A vast amount of 
literature is available, for instance, Chaudhuri and Mukherjee (1984,  and references 
therein) and Flessas and Whitehead (1984) .  The Hamiltonian is (in suitable units) 

d2 N 

dx2 t = 2  
A= --+i2+ 1 A i i 2 ‘ ,  

so that (see equation ( 2 . 4 ) )  

( 4 . 2 )  
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We have performed calculations for N = 2 for a wide range of coupling constants 
A (between 1 and 40000). Our results are to be compared with the ‘exact’ ones of 
Biswas et a1 (1973) based on the Hill determinant method. We have used seven points 
in discretising the corresponding secular equation ( (7  x 7) matrices to be separately 
diagonalised for even and  odd states). The agreement between our results and those 
of Biswas er a1 (1973) is excellent (seven digits for the GS). Notice that we deal just 
with 7 x 7 matrices, while Biswas et a1 (1973) have to tackle matrices of the orde; 50 x 50. 

4.2. Double minimum potential 

This is a potential of the form (Bozzolo et a1 1984) 

U ( 2 )  = -i2+ A i 4  

that exhibits a double minimum and a ‘barrier’ at the origin. Here we have 

(4.4) 

Our treatment yields rather satisfactory results. As an  example, we mention that 
for A = 5.0 an  8-point GCM mesh is able to reproduce the figures obtained by means 
of a 25 x 2 5  diagonalisation (in a harmonic oscillator basis) up  to seven digits for the 
GS and the FES. 

4.3. Razavy potential (Razavy 1980) 

The motion of a particle in the presence of two centres of force is approximately 
described by double-well potentials, as, for instance, 

(4.6) 

n,m being free parameters. An exact analytical solution exists for the first ( n  + 1) 
levels. In our case we have 

U ( ? )  = f m 2  (cosh(42) - 1) - m ( n  + 1) cosh(2?), 

(4.7) 

We have compared ~ O G C M  mesh point results with the exact ones. The agreement 
is excellent. We have taken n = 1 and n = 2 with m ranging from m = 1 up  to m = SO. 
If we define E = I(E,,,,, - EGCM)/Eexactl, E ranges between 2.10 x 10- and 1.0 x lo-’’ 
for the GS, with slightly worse results for excited states. As this is by no means a trivial 
U ( x ) ,  we believe these results will prove to be hard to match by other approximations. 

4.4. Square well 

Let U ( x )  = p for 1x1 > a. This simple potential poses a rather stringent test for our 
approach, since U ( x )  does not look at all like an anharmonic oscillator potential. We 
have taken, as an example, LY = 0.2 and a = 0.5 and p = 0.2, 0.5 and 1.0. Only one 
bound state exists in these circumstances and 
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The present scheme reproduces the exact results (up  to three significant digits) with 
a 9-point mesh. 

4.5. Interaction of the type Ax'/(l +gx') 

Let us consider the Hamiltonian (Biswas et a1 1973) 

I? = -d2 /dx2+x2+Ax2/ (1+gx2)  (4.9) 

with the interaction in the last term characterised by two free parameters A and g (we 
have chosen A = 50 and A = 100, Rith g ranging from 0.1 up  to 100.0). 

This Hamiltonian is not exactly solvable. Approximation schemes must be used, 
based usually either on variational or on perturbation methods. An elegant approach 
has been formulated by Mitra (1978), who employs the Ritz variational method in 
conjunction with the Givens-Householder algorithm. Sophisticated numerical tech- 
niques guarantee the accuracy of these results. More recent studies were done by 
Chaudhuri and Mukherjee (1983) and Cohen (1984) 

x e x p ( y )  erf[ (+) a '+P-  ' I 2  I) (4.10) 

Our results for the first three eigenvalues of (4.9) with nine points reproduce exactly 
those published by Mitra (1978). 

5. Conclusions 

A simple, approximate variational procedure for the study of the one-dimensional 
Schrodinger equation (with the potential an even function of the coordinate) has been 
presented. The approach is based upon the idea of extending, by recourse to the GCM 

with the scaling parameter as generating coordinate, the well known scaling (of the 
wavefunction) method, widely employed in order to obtain upper bounds to the G S .  

Our approach thus yields upper bounds not only to the G S ,  but to excited states 
as well. The use of a scaled wavefunction is just a particular instance of the present 
algorithm, for which one just takes a single point in the discretisation scheme (and 
minimises the expectation value of 

The present technique leads to an extremely simple numerical problem (diagonalisa- 
tion of matrices of the order 10 x lo ) ,  which is to be contrasted with the sophisticated 
algorithms employed by other authors with reference to the anharmonic oscillator 
problem. Moreover, our approach is quite general while it is not so easy to see how 
these latter formalisms could be applied to problems different from the one posed by 
the anharmonic oscillator. 

As a further advantage of the present approximation, it should be pointed out that 
the (in some cases) quite difficult evaluation of matrix elements is entirely bypassed 
here. All one needs is just the integral of the U ( x )  times a Gaussian (available, in 
general, from suitable tables). 

with respect to the scaling parameter). 



3510 C Esebbag, J Nu'nez, A Plastino and G Bozzolo 

Acknowledgments 

We are grateful for helpful discussions with Lic M T Martin. We also acknowledge 
the assistance of C Mostaccio and S Gordillo of LABCAN La Plata. One of us (GB) 
acknowledges the support in part by the USDOE, Contract No DE-AC02-82-ER40068, 
Division of High Energy and Nuclear Physics. 

References 

Biswas S N, Datta K, Saxena R P, Srivastava P K and Varma V S 1973 J. Math. Phys. 14 1190 
Bozzolo G and Plastino A 1981a KINAM 3 347 
- 1981b Phys. Rev. D24 3113 
Bozzolo G, Esebbag C and Plastino A 1984 KINAM 6 11 
Chaudhuri R N and Mukherjee B 1983 J. Phys. A:  Math. Gen. 16 4031 
- 1984 J. Phys. A: Math. Gen. 17 277 
Cohen M 1984 J. Phys. A:  Math. Gen. 17 2345 
Faessler A and Plastino A 1973 Z. Phys. 260 305 
Flessas G P and Whitehead R R 1984 J. Math. Phys. 25 923 
Griffin J J and Wheeler J A 1953 Phys. Reo. 108 381 
Hill D L and Wheeler J A 1953 Phys. Reo. 89 1102 
Hylleraas E A and Undheim B 1930 Z. Phys. 65 759 
Mitra A K 1978 J. Math. Phys. 19 2018 
Razavy M 1980 Am. J. Phys. 48 285 


